Компьютер представляет собой собранные на золотой пластине 16 молекул дурохинона, каждая из которых имеет форму зубчатого колеса с четырьмя выступающими спицами.
Такие машины навсегда избавят нас от «кровавой» хирургии, например при разрушении опухолей и тромбов или операциях на мозге
Семнадцатая молекула, выполняющая функцию подачи команд, находится в центре. Молекулы соединены водородными связями (вид сравнительно слабых химических связей).
Каждый поворот центральной молекулы приводит ее в новое состояние, что эквивалентно логическим уровням 0, 1, 2 и 3.
Напомним, что подавляющее большинство логических устройств имеет сегодня два логических состояния 0 («выключено») и 1 («включено»).
Таким образом, нанокомпьютер способен обрабатывать за одно действие 4 в 16-й степени бит информации.
Притом что современные компьютеры могут обрабатывать за раз не более… одного бита. Иное дело, что делают они это очень быстро, совершая миллионы операций в секунду.
Для управления компьютером используется специальный туннельный сканирующий микроскоп, который одновременно является и считывающим устройством.
Считается, что способность совершать параллельные вычисления присуща нейронным системам, например человеческому мозгу.
Вероятно, что на этом принципе когда-нибудь будет создан настоящий искусственный интеллект, способный к самопознанию и саморазвитию.
Впрочем, это дело отдаленного будущего, а пока машину, способную с помощью одной команды управлять сразу несколькими устройствами, японские ученые приспособили командовать наноботами – микромашинами, которые в состоянии, например, проникать в самые труднодоступные участки человеческого тела.
«В будущем машины под управлением нанокомпьютеров, запрограммированных, например, молекулой протеина, навсегда избавят нас от «кровавой» хирургии, например при разрушении опухолей и тромбов или операциях на мозге. Доктор сможет ввести наноботы внутривенно, и они попадут к больному месту с током крови», – говорит Анирбан Бандтопадхьяй, ученый индийского происхождения, работающий в Цукубе.
«Несколько образцов наноботов уже были созданы ранее, но у нас не было машин, способных ими управлять» – добавляет Бандтопадхьяй.
Для проверки работы устройства к нему были присоединены 8 наномеханизмов, включая самый маленький в мире элеватор – микроплатформу, которая может передвигаться вверх и вниз на 1 нанометр.
В ходе эксперимента удалось заставить работать все 8 наномеханизмов при помощи одной-единственной команды.
Как скоро чудо-механизмы достигнут стадии практического применения? «Не завтра, – говорит в интервью MSNBC Марк Ратнер, ведущий специалист по нанотехнологиям из Северо-Западного университета Канады. – Я был рад увидеть собственными глазами, как один-единственный электрический сигнал вызвал столько различных событий, но технология еще весьма далека от практики. Действительно, ведь для управления нанокомпьютером требуется огромный электронный микроскоп, занимающий целую комнату!» – сетует Ратнер.
«Впрочем, многие компании уже работают над устройствами, способными считывать информацию с нанокомпьютеров и управлять медицинскими наночипами и нанофабриками, которые смогут производить молекулы лекарственных веществ, находясь непосредственно в больном органе человека».
Хотя устройство, которое создал Бандтопадхьяй, требует для работы глубокого вакуума и температур в районе температуры жидкого кислорода – 196 градусов по Цельсию, – ученый полон оптимизма.
Уже через год он намерен показать нанокомпьютер, состоящий из 1 024 молекул, способный выполнять одновременно 1024 операции.
Поскольку каждая из молекул способна принимать четыре состояния, число возможных комбинаций будет при этом достигать фантастической цифры 4 в 1024-й – это больше 1000 нулей после запятой!
О компьютерах с такой разрядностью, созданных без применения нанотехнологий, невозможно даже помыслить.